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BACKGROUND AND PURPOSE

Gene expression of Cyp3al1 is reduced by activation of Toll-like receptors (TLRs) by Gram-negative or Gram-positive bacterial
components, LPS or lipoteichoic acid (LTA) respectively. The primary adaptor protein in the TLR signalling pathway, TIRAP,
plays differential roles in LPS- and LTA-mediated down-regulations of Cyp3al1 mRNA. Here, we have determined the
functional relevance of these findings by pharmacokinetic/pharmacodynamic (PK/PD) analysis of the Cyp3a substrate
midazolam in mice. Midazolam is also metabolized by Cyp2c in mice.

EXPERIMENTAL APPROACH
Adult male C57BL/6, TIRAP+/+ and TIRAP—/— mice were pretreated with saline, LPS (2 mg-kg—1) or LTA (6 mg-kg—1). Cyp3all
protein expression, activity and PK/PD studies using midazolam were performed.

KEY RESULTS

Cyp3al1l protein expression in LPS- or LTA-treated mice was reduced by 95% and 60% compared with saline-treated mice.
Cyp3al1l activity was reduced by 70% in LPS- or LTA-treated mice. Plasma AUC of midazolam was increased two- to threefold
in LPS- and LTA-treated mice. Plasma levels of 1-OHMDZ decreased significantly only in LTA-treated mice. Both LPS and LTA
decreased AUC of 1"-OHMDZ-glucuronide. In the PD study, sleep time was increased by ~2-fold in LPS- and LTA-treated mice.
LTA-mediated decrease in Cyp3al1l protein expression and activity was dependent on TIRAP. In PK/PD correlation, AUC of
midazolam was increased only in LPS-treated mice compared with saline-treated mice.

CONCLUSIONS AND IMPLICATIONS
LPS or LTA altered PK/PD of midazolam . This is the first study to demonstrate mechanistic differences in regulation of
metabolite formation of a clinically relevant drug by Gram-negative or Gram-positive bacterial endotoxins.

Abbreviations

1-OHMDZ, 1’-hydroxymidazolam; 1-OHMDZ-gluc, 1’-hydroxymidazolam glucuronide and ICU, Intensive care unit;
AUC, area under the curve; CL, clearance; CYP, cytochrome P450; DMEs, drug-metabolizing enzymes; LTA, lipoteichoic
acid; PD, pharmacodynamics; PK, pharmacokinetics; TIRAP, Toll-IL-1 receptor domain containing adaptor protein; TLR,
Toll-like receptor
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Regulation of midazolam PK/PD during inflammation

Introduction

Inflammation is a complex immunological response elicited
during many disease states, making it a critical phenomenon
in clinical therapies. An acute inflammatory reaction can be
initiated by a wide variety of pathological stimuli, such as
bacterial or viral infections, tissue damage or cellular stress,
which results in the release of pro-inflammatory cytokines
and alteration in the expression of several hepatic proteins.
Several studies have shown that inflammation can lead to an
impairment of the expression and activity of drug-
metabolizing enzymes (DMEs) in rodents and humans (Sewer
etal.,, 1996; Morgan, 1997; Siewert et al., 2000; Giannini
etal.,, 2003). Regulation of DMEs during inflammation is
dependent on the type of inflammatory stimuli (Sewer et al.,
1996; 1997; Barclay etal., 1999; Chaluvadi etal., 2009).
However, it is not known whether reductions in DMEs by
different inflammatory stimuli are responsible for reducing
the metabolite formation of drugs metabolized by specific
DMESs. Reduced metabolite formation during inflammation
can lead to increased accumulation of the parent compound
in the plasma. This can change the pharmacological activity
of clinically relevant medications, leading to reduced efficacy
or increased toxicity.

Among the phase I and phase II DMEs, the human CYP3A
subfamily is responsible for metabolizing approximately half
of currently marketed drugs (Shimada et al., 1994; Thummel
et al., 1996; Guengerich, 1999; nomenclature follows Alex-
ander etal., 2011). Studies have shown that the Gram-
negative bacterial endotoxin LPS can induce acute phase
response in animals, which can lead to decreased expression
and activity of key phase I and II DMEs (Morgan, 1989;
Renton and Nicholson, 2000), ultimately leading to
decreased hepatic drug metabolism (Monshouwer etfal.,
1996). Also, a clinical study showed that LPS injection led to
a significant decrease in the clearance of antipyrine (Shedlof-
sky etal., 1994). Recently, we showed that LPS-mediated
down-regulation of hepatic Cyp3all mRNA levels was medi-
ated through activation of the pathogen recognition receptor,
the Toll-like receptor 4 (TLR4) (Ghose et al., 2008). In com-
parison with Gram-negative organisms, Gram-positive bacte-
ria such as Enterococcus faecalis, Staphylococcus aureus or
Streptococcus pneumoniae are also highly prevalent. Statisti-
cally, infections caused by Gram-positive antigens account
for >50% of total organisms causing sepsis (Martin efal.,
2003). Gram-positive infections are commonly implicated in
producing the toxic shock syndrome, which is an acute,
multi-organ illness, typically resulting in shock (Sriskandan
and Cohen, 1999). We have shown that activation of TLR2 by
the Gram-positive bacterial endotoxin lipoteichoic acid (LTA)
reduced the gene expression of hepatic DMEs and transport-
ers (Ghose etal.,, 2009; 2011). A recent clinical study also
showed that LTA treatment elicited a different response in the
lungs compared with LPS (Hoogerwetf et al., 2008). However,
there is a limited understanding of how alterations in DME
genes by LPS or LTA cause changes in metabolism and clear-
ance of clinically relevant medications. It is known that TLR4
or TLR2 activation by LPS or LTA, respectively, is initiated by
the primary adaptor protein, Toll-IL-1 receptor domain con-
taining adaptor protein (TIRAP)-dependent pathway. In our
previous studies, we have shown that the down-regulation of

mRNA levels of key phase I and Il DMEs by LTA was mediated
by TIRAP, while LPS-mediated effects on these DMEs was not
dependent on TIRAP (Ghose et al., 2008; 2011). Thus, Gram-
negative and Gram-positive bacteria may regulate drug
metabolism by distinct mechanistic pathways.

In this study, we determined the metabolism of mida-
zolam as it is a clinically relevant drug, widely used for ana-
esthesia in surgical and dental procedures. Midazolam is also
used as a sedative for acutely agitated patients in intensive
care units due to its favourable PK properties. It is considered
to be a specific substrate of CYP3A and routinely used as a
marker of CYP3A4 activity in humans (von Moltke et al.,
1996; Greenblatt et al., 2003). However, in vivo studies have
shown a fivefold variation (in 98% of study population)
(Floyd et al., 2003) and 11-fold variation (in 90% of study
population) (He et al., 2005) in the clearance of midazolam.
Although midazolam is used to study Cyp3a activity in mice,
recent studies in Cyp3a” mice showed a significant contri-
bution of Cyp2c enzymes to midazolam metabolism (Perloff
et al., 2000; 2003; Warrington et al., 2000; van Waterschoot
RA et al., 2008). This compound is not a P-glycoprotein (Pgp)
substrate and is therefore mainly cleared by hepatic and/or
intestinal metabolism owing to its intermediate extraction
ratio (E=0.3-0.7) (Polli ef al., 2001; Gorski et al., 2003). In
humans, midazolam is oxidized by CYP3A4 to form the
primary metabolite, 1’-hydroxymidazolam (1-OHMDZ)
(Heizmann efal., 1983). In mice, Cyp3a and Cyp2c are
involved in formation of 1-OHMDZ and 4’-OHMDZ (van
Waterschoot RA et al., 2008). Studies in humans have shown
that 1’-OHMDZ further undergoes o-glucuronidation to form
1’-hydroxymidazolam-glucuronide = (1-OHMDZ-gluc) by
UGT2B4 and 2B7 (Zhu et al., 2008). 1’-OHMDZ has ~50%
pharmacological activity as the parent compound, and the
affinity of 1"-OHMDZ to the benzodiazepine receptors in the
brain is ~60% of that of midazolam. Because of its very short
half-life and lower pharmacological activity, 1"-OHMDZ is
said to have negligible clinical effects (Bornemann et al.,
1985). On the other hand, clinical studies have shown that,
accumulation of 1’-OHMDZ-gluc caused prolonged sedation
in patients suffering from acute renal failure (Driessen et al.,
1991; Bauer et al., 1995; Swart et al., 2005).

To investigate the effects of midazolam and its metabo-
lites on the pharmacological activity in mice, we performed
PK/PD correlation using model independent linear regression
analysis. We found that the PK and PD profiles of midazolam
and its metabolites showed significant differences in LPS- or
LTA-treated mice compared to the control. This corresponds
to reduced expression and activity of Cyp3all in mice. This
study provides direct evidence that inflammation reduces the
metabolism and clearance of midazolam, which leads to pro-
longed sedation in mice. This study warrants further investi-
gation of inflammation-mediated alterations in drug
metabolism and its effects on the safety and efficacy of thera-
peutic agents.

Methods

Animals
All animal care and experimental procedures complied
strictly with the Institutional Animal Care and Use Commit-
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tee guidelines. Studies involving animals are reported in
accordance with the ARRIVE guidelines for reporting experi-
ments involving animals (McGrath et al., 2010). Adult male
C57BL/6, TIRAP** and TIRAP”~ mice (8-10 weeks) weighing
20-25 g were maintained in a temperature and humidity
controlled environment and 12 h light/dark cycle with free
access to water and rodent chow ad libitum. A total of 75 mice
were used in the experiments described here.

Preparation of liver microsomes

Mouse liver microsomes were prepared using a published
procedure, with minor modifications as described below
(Chen et al., 2003). Mice were injected i.p. with saline, LPS
(2 mg-kg™) or LTA (6 mg kg ') and, 16h later, the animals
were Kkilled by cervical dislocation, the livers perfused with
sodium phosphate buffer (pH 7.4) to remove blood and
collected for the preparation of microsomes. Livers were
homogenized using a motorized homogenizer in ice-cold
homogenization buffer [SO mM potassium phosphate buffer
(pH 7.4), 250 mM sucrose, 1 mM EDTA] and centrifuged at 18
500x g for 15 min at 4°C. The pellet was discarded, and the
supernatant was collected and centrifuged again at 85 600x g
for 60 min at 4°C to yield the microsome pellets. The
microsome pellet was resuspended in 250 mM sucrose.
Protein concentration was determined using a BCA protein
assay kit (Pierce, Rockford, IL) using BSA as the standard.

Cyp3all protein expression

Protein expression of Cyp3all in mouse liver microsomes
was determined by immunoblotting analysis as described pre-
viously (Ghose et al., 2008; Gandhi et al., 2011), with minor
modifications. Hepatic microsomal proteins (10 ug) were
separated by SDS-PAGE on a 12% polyacrylamide resolving
gel (Bio-Rad, Hercules, CA). Samples were then transferred to
nitrocellulose membrane. Membranes were blocked with 5%
nonfat milk in TBS-Tween-20 washing buffer for 1 h and then
incubated with primary anti-rabbit Cyp3all antibody
(1:4000) in 5% BSA in TBS-Tween20 overnight at 4°C. Mem-
branes were subsequently washed and probed with a goat
anti-rabbit IgG-alkaline phosphatases (IgG-AP) secondary
antibody (1:2000) and incubated with Tropix® CDP Star®
Nitro block IITM ECL reagent according to the manufactur-
er’s instructions (Applied Biosystems, Foster City, CA). Mem-
branes were analysed on FluorChem FC Imaging System (Cell
Biosciences, Santa Clara, CA).

Cyp3all enzyme activity

Hydroxylation of midazolam was measured using mouse liver
microsomes as described in detail previously (He et al., 2006),
with minor modifications. The formation of 1-OHMDZ was
used as a specific indicator for mouse Cyp3all activity. In
brief, incubation mixtures (performed in duplicate) con-
tained 0.05 mg of total microsomal protein, midazolam
(0-16 uM), 1.3 mM NADPH and reaction cofactors in 50 mM
potassium phosphate buffer (pH 7.4). The reaction mixtures
were incubated at 37°C. The reaction was initiated by addi-
tion of glucose-6-phosphate dehydrogenase (1 unit-mL™).
After 5 min, the reactions were stopped by the addition of
100 pL of acetonitrile containing phenacetin as the internal
standard. The incubation mixture was centrifuged, and the
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supernatant was analysed by LC-MS/MS analysis. The iden-
tity of 1’-OHMDZ and the internal standard was verified by
comparing with authenticated standards. The data were fit to
the substrate inhibition model and analysed by GraphPad
Prism 4.0 software (GraphPad Inc., La Jolla).

LC-MS/MS

To determine the concentrations of midazolam and its
metabolites in microsomal and plasma samples, an API 3200
Qtrap triple quadrupole mass spectrometer (Applied
Biosystems/MDS SCIEX) was used by MRM (multiple reaction
monitoring) method in the positive ion mode. A UPLC
system, Waters Acquity™ with diode-arrayed detector was
used. The UPLC conditions for analysing midazolam,
1"-OHMDZ, 1’-OHMDZ-gluc and phenacetin (internal stan-
dard) were as follows: column, Acquity UPLC BEH C18
column (SO0 mm x 2.1 mm [.D., 1.7 um, Waters, Milford,
MA); mobile phase A, 0.1% formic acid; mobile phase B,
100% acetonitrile performed in a gradient from O to 3 min as
follows: 0-0.5 min: 90% A; 0.5-1.0 min: 75% A; 1.0-2.0 min:
60% A and 2.0-2.5 min: held constant at 60% A, 2.5-3.0 min:
90% A respectively. The quantification was performed using
MRM method with the transitions of m/z 326.1 — m/z 291.1
for midazolam, 342.1 — 324.1 for 1’-OHMDZ, 518.1 — 324.1
for 1’-OHMDZ-gluc and 180.0 — 110.0 for phenacetin. The
retention times were as follows: midazolam, 1.98 min;
1’-OHMDZ, 1.93 min; 1-OHMDZ-gluc, 1.72 min and phen-
acetin, 1.79 min.

Pharmacokinetic (PK) study of midazolam
Mice were injected i.p. with saline, LPS or LTA followed by i.p.
injection of midazolam (5 mg-kg™") 16 h later. Blood samples
(10-15 pL) were collected from the tail vein in heparinized
tubes at 0, 5, 15, 30, 60, 120, 240, 360 and 480 min following
midazolam. For extraction of midazolam and its metabolites,
50 uL of diluted plasma (10-fold dilution) was mixed with
450 pL of acetonitrile and 450 pL of methyl t-butyl ether. The
samples were vortex-mixed, centrifuged and the organic layer
was evaporated under a gentle stream of air and reconstituted
in 150 pL of 30% acetonitrile. The lower limits of quantifica-
tion in this study were 1.95ng-mL* for midazolam,
391 ngmL! for 1-OHMDZ and 15.63ngmL"' for
1"-OHMDZ-gluc. The linear range for midazolam was 1.95-
1000 ng-mL™", for 1-OHMDZ was 7.81-1000 ng-mL™" and for
1"-OHMDZ-gluc was 62.5-1000 ng-mL™" respectively. The
within-day variability did not exceed 15.3% and the between-
day variability did not exceed 13.9% respectively. PK param-
eters such as maximum plasma concentration (Cy.y), time to
reach Cphax (Tmax), area under the plasma concentration-time
curve (AUCqys1n), volume of distribution (V), clearance (CL)
and half-life (t;,) for midazolam or the metabolites were
derived from the plasma concentration-time data by non-
compartmental model using WinNonlin 3.3, respectively
(Pharsight, Mountain View, CA).

Pharmacodynamic (PD) study of midazolam
For PD studies, mice were pretreated with saline, LPS or LTA
followed by i.p. injection of midazolam (80 mg-kg™) 16 h
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later. Sleep time (time between the loss and regaining of
righting reflex) in minutes was used as a marker for the PD
activity of midazolam.

PK-PD correlation of midazolam and its
metabolites with the sleep time

Adult, C57BL/6 mice were divided into three groups (n = 3-5
per group) and treated with saline, LPS or LTA. Mice were i.p.
injected with a pharmacological dose of midazolam
(80 mg-kg™") 16 h later. Mice were allowed to turn on their
back, and blood samples were collected in heparinized tubes
at 30, 60, 180 and 300 min respectively. Plasma concentra-
tions of midazolam, 1-OHMDZ and 1-OHMDZ-gluc were
determined by LC-MS/MS. The AUCs were calculated by the
trapezoidal rule. A correlation between the AUC of mida-
zolam and its metabolites with the sleep time was fitted using
linear regression analysis.

Statistical analysis

All the experiments were conducted with n=3-5 mice in
each group. The numerical data are presented as mean = SD
and analysed by a one-way ANOVA followed by Tukey’s post
hoc analysis, if P <0.05. The enzyme kinetic data with the
TIRAP mice was analysed by a two-way ANOVA followed by
Bonferroni’s multiple comparison test, if P < 0.05.

Materials
Midazolam (Cat # 451028) was purchased from BD Bio-
sciences (San Diego, CA). Phenacetin (cat. # 77440) and

A

cyp3aii -“
v.w .

v ol

1"-OHMDZ (Cat. # UC430) were purchased from Sigma
Aldrich (St. Louis, MO). 1-OHMDZ glucuronide was a kind
donation from Dr Gérard Fabre (Sanofi-Aventis, France).
Midazolam hydrochloride solution for injections was pur-
chased from Baxter Healthcare Corporation (Deerfield, IL).
LPS (E. coli) and LTA(S. aureus) were purchased from Invivo-
Gen (San Diego, CA) and freshly diluted to 5 mg-mL™ in
pyrogen-free 0.9% NaCl solution. The anti-CYP3A antibody
was a generous gift from Dr Robert ] Edwards, Department of
Medicine, Imperial College (London, UK). All solvents were
of HPLC grade and were obtained from VWR International,
LLC (Suwanee, GA). Unless otherwise noted, all other chemi-
cals were purchased from Sigma-Aldrich.

Results

Regulation of Cyp3all expression and
activity in inflammation

Our recent studies showed that activation of TLR4 by LPS or
TLR2 by LTA down-regulated the gene expression of hepatic
Cyp3all (Ghose etal.,, 2008; 2009; 2011). In the present
study, we determined the protein expression and activity of
Cyp3all. We observed ~25-fold down-regulation of Cyp3all
protein expression in LPS-treated mice and ~3-fold in LTA-
treated mice compared with saline-treated mice (Figure 1A).
We determined Cyp3all activity by measuring hydroxyla-
tion of the Cyp3a substrate, midazolam, as described previ-
ously (Thummel etal, 1994). Cyp3all activity (Vma)
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Figure 1

20

Regulation of Cyp3al1 protein expression and activity: Mice were injected i.p. with saline, LPS (2 mg-kg™") or LTA (6 mg-kg™), and 16h later livers
were collected and analysed (n =4 per group). Microsomes were prepared as described. (A) Cyp3al1 expression was analysed by Western blot
analysis of microsomal fractions (10 pg protein-per well) using anti-rabbit Cyp3a11 antibody. *P < 0.05 and **P < 0.01. compared with saline. (B)
Hydroxylation of midazolam was used as a marker of Cyp3al1 activity. Data are shown as mean * SD. * P < 0.05, significantly different from

saline.
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Table 1

Enzyme kinetic parameters of midazolam

Parameters Saline
Vmax (nmol-min~'-mg™") 14.14 = 415 2.88 = 0.41* 3.42 + 2.46*
Ky (UM) 6.58 = 1.44 3.24 + 0.29* 4.85 = 2.87
CLint (mL-min~"-mg™) 2.14 £ 0.27 0.89 + 0.07* 0.67 + 0.08*
Ki (uM) 9.65 + 2.09 24.75 = 12.99 13.51 + 6.54
*P < 0.05 when compared to the respective parameter in the saline group.
Table 2
PK parameters of (A) midazolam, (B) 1"-OHMDZ and (C) 1"-OHMDZ-gluc
Parameter Saline LPS LTA
(A) midazolam
AUCo_sn (Lmol.min-L™") 13.69 =+ 3.36 37.24 £ 14.13* 24.63 = 6.94*
Crmax (umol-L™") 0.24 = 0.02 0.41 £ 0.11* 0.40 = 0.18
Tiax (Min) 10.00 = 5.77 15.00 = 0.00 12.5 = 5.00
Ti/2 (Min) 31.52 £17.23 54.92 = 13.36 99.91 * 46.67*
CL (L-min~"-kg™) 1.13 £ 0.22 0.46 + 0.18* 0.65 + 0.19*
Va (L'kg™) 47.57 = 16.05 35.36 = 13.59 92.52 + 35.58*

(B) 1"-OHMDZ
AUCq_gh (umol.min-L™")

216.42 + 56.78

168.09 = 36.98

117.60 = 26.52*

36.46 = 7.67 34.74 £ 8.78
1.03 = 0.16 0.84 = 0.27*

18.13 £ 2.44* 16.20 = 0.50*

49.63 + 6.80* 33.31 £12.08
0.08 £ 0.01* 0.12 = 0.01*

Tmax (MiN) 29.54 + 6.98

Conax (umol L) 1.56 = 0.49
(C) 1"-OHMDZ-gluc

AUCo_gh (umol.min-L™") 24.50 += 3.06

Trmax (MiN) 29.42 + 4.67

Crnax (Wmol-L") 0.20 + 0.02

*P < 0.05 when compared to the respective parameter in the saline group.

decreased significantly (~4-5-fold) in both, LPS- and LTA-
treated mice compared with saline-treated mice (Figure 1B).
There was no significant difference in the K, values between
saline and LTA-treated mice. However, the K, was signifi-
cantly lower in LPS-treated mice, compared with saline-
treated mice (Table 1). The intrinsic clearance (CLiy) was
significantly lower in LPS- or LTA-treated mice (~2-3-fold
reduction in CLi,;) compared with saline-treated mice. The
substrate inhibition constant (K;) did not change significantly
amongst the three groups (Table 1).

PK of midazolam

As hepatic Cyp3all protein expression and activity were
reduced by LPS or LTA, we determined the plasma PK profiles
of midazolam. The results demonstrated a significant increase
in the AUC of midazolam in LPS- or LTA-treated mice (~2-3-
fold) compared with saline-treated mice (Figure 2, Table 2A).
Similarly, there was a significant decrease in the clearance of
midazolam in LPS or LTA groups (~2-3-fold) compared with
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the saline group (Table 2A). The PK parameters for 1-OHMDZ
showed an interesting outcome in LPS- or LTA-treated mice.
There was a significant decrease in the Cy,.x of 1-OHMDZ with
a corresponding decrease in AUC (~2-fold reduction) in LTA-
treated mice compared with saline-treated mice (Figure 2,
Table 2B). These parameters were unchanged in LPS-treated
mice. On the other hand, AUC of the secondary metabolite,
1-OHMDZ-gluc, was significantly decreased (~1.5-fold reduc-
tion) in LPS- or LTA-treated mice compared with saline-
treated mice (Figure 2, Table 2C).

PD of midazolam

Being a short-acting benzodiazepine, midazolam is com-
monly used in surgical and dental procedures for mild ana-
esthesia. Therefore, we used sleep time as a marker for the
pharmacological activity of midazolam. We observed an
almost 2-fold increase in the sleep time in LPS- (288.75 min)
or LTA- (220.0 min) treated mice compared with saline-
treated mice (151.33 min).
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Figure 2

PK of midazolam in LPS- or LTA-induced inflammation. Plasma con-
centration versus time profiles from 0 to 8 h for midazolam,
1”-OHMDZ and 1’-OHMDZ-gluc in saline-, LPS- (2 mg-kg™") or LTA-
(6 mg-kg™) treated mice followed by i.p. administration of mida-
zolam (5 mg-kg™") are shown. Plasma samples were processed as
described. n = 4-5. Data are shown as mean + SD. *P < 0.05, signifi-
cantly different from saline.

PK-PD correlation of midazolam and its
metabolites with the sleep time

Due to the formation of an active metabolite of midazolam,
another goal of this study was to determine a correlation
between the plasma levels of midazolam or its metabolites to
the pharmacological activity of midazolam in mice. The

pharmacological potency of 1’-OHMDZ compared with the
parent compound remains controversial (Mandema et al.,
1992; Reed et al., 2001). Therefore, in this study, we examined
whether the sedative-hypnotic activity of midazolam is
related to plasma concentrations of either midazolam, or its
metabolites following the administration of a single i.p. dose
of midazolam (80 mg-kg') in mice using conventional
model-independent analysis. This dose of midazolam was
shown to induce sleep in mice. Plasma concentration-time
profiles of midazolam, 1-OHMDZ or 1-OHMDZ-gluc in
saline, LPS- or LTA-treated mice are shown in Figure 3A. We
observed a significant increase in the plasma levels of mida-
zolam in the LPS group at 3 and 5 h compared with the saline
group, whereas plasma levels of midazolam in the LTA group
were significantly different only at 5 h compared with the
saline group (Figure 3A). We also observed significantly
reduced plasma levels of 1-OHMDZ in the LPS group at 30
and 60 min compared with the saline group. Plasma level of
1-OHMDZ was lower in the LTA group only at 30 min. On
the other hand, we also observed significantly reduced
plasma levels of 1’-OHMDZ-gluc in the LPS group at 30 and
60 min. Surprisingly, the plasma levels of 1’-OHMDZ-gluc
increased at 5 h in the LPS group compared with the saline
group (Figure 3A). However, in the LTA group, the plasma
levels of 1-OHMDZ-gluc were significantly reduced only at
30 min (Figure 3A).

The next aim was to determine the correlation between
AUC:s of midazolam and the metabolites with the sleep time.
Our results demonstrated that higher AUC of midazolam in
the LPS group corresponded with the increased sleep time in
mice compared with the saline group (Figure 3B). However,
AUC of midazolam in the LTA group did not show a signifi-
cant increase compared with the saline group. On the other
hand, the AUC of 1’-OHMDZ or 1-OHMDZ-gluc in the LPS or
LTA group did not show a significant difference compared
with the saline group (Figure 3B). Thus, increased sleep time
of mice correlated with increased AUC of midazolam. Fur-
thermore, there was an inverse correlation between sleep
time and AUC of metabolites. This study therefore confirms
that the increase in the pharmacological activity of mida-
zolam is associated with the concentrations of the parent
compound in LPS-treated mice, and not to any of the
metabolites studied.

Role of TIRAP in Cyp3all expression

and activity

Our previous studies showed that TIRAP played a differential
role in regulating the gene expression of various phase I and
phase II enzymes in LPS- or LTA-induced inflammation
(Ghose et al., 2008; 2009; 2011). Therefore, we sought to
determine whether TIRAP also played a role in midazolam
metabolism upon LPS or LTA treatment. We observed a 2-3-
fold reduction in Cyp3all protein expression in liver
microsomes from LPS- or LTA-treated TIRAP** mice compared
with saline-treated mice (Figure 4). We also observed a 2-3-
fold decrease in Cyp3all activity (Vima) and CLi, in LPS- or
LTA-treated TIRAP"* mice compared with saline-treated mice
(Figure 5). However, this reduction in Cyp3all protein
expression and activity was attenuated only in the LTA-
treated TIRAP”- mice (Figures 4 and 5, Table 3). Cyp3all
expression and activity were comparable in saline-treated
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Table 3

Enzyme kinetic parameters of midazolam in TIRAP mice

TIRAP+
Parameters LPS
Vinax (nmol-min~"-mg™") 8.88 + 1.83 4.32 + 0.86*
Ky (uM) 4.04 = 1.00 3.06 = 0.82
CLine (mL-min~"-mg™) 2.22 +0.18 1.45 = 0.27*
Ki (uM) 13.47 + 3.91 23.89 = 14.55

4.02 = 2.50* 13.72 £ 3.78 5.18 £ 1.59* 9.17 = 3.54
3.05 = 2.33 6.50 = 2.47 3.24 + 1.19* 4.19 = 2.31
1.41 = 0.24* 217 £0.22 1.64 = 0.20* 3.12 +1.35
63.02 = 64.55 9.29 + 3.66 14.26 = 3.25 15.42 = 7.57

*P < 0.05 when compared to the respective parameter in the saline group.

TIRAP** and TIRAP”~ mice. There was no significant differ-
ence in the Ky values between saline- and LTA-treated mice;
however, the K, was significantly lower in LPS-treated mice
compared with saline-treated mice.

Discussion

In this study, we report that inflammation induced by the
bacterial endotoxins can significantly alter Cyp3all enzyme
activity and PK/PD of the Cyp3all specific substrate, mida-
zolam. The regulation of midazolam metabolism by Gram-
negative or Gram-positive bacterial components occurs by
distinct mechanistic pathways.

We observed a significant reduction in Cyp3all protein
expression as well as activity in LPS- or LTA-induced inflam-
mation compared with saline pretreatment (Figure 1A). Also,
the reduction in Cyp3all protein expression and activity (as
shown by reduced formation of 1-OHMDZ (Figure 1B), in
mouse liver microsomes by LPS was comparable to previous
studies (Barclay et al., 1999). To further extend the signifi-
cance of this finding, our next goal was to study the effect of
inflammation on PK/PD of midazolam in mice.

In the PK studies, we observed a significant increase in the
plasma exposure (AUC,sn) and a significant decrease in the
CL of midazolam in LPS- as well as LTA-treated mice (Figure 2;

Table 2A). Changes in the PK profiles of midazolam by LPS or
LTA can have serious implications on the efficacy and safety
of midazolam. Several studies have shown clinically relevant
drug-drug interactions with midazolam in animals as well as
humans (Palkama etal., 1999; Kotegawa etal., 2002).
Increased midazolam plasma levels can lead to respiratory
depression, further leading to a requirement for intubation
and ventilatory support. Our results can serve as a paradigm
for midazolam dosage optimization in patients with under-
lying bacterial infections. Although LPS did not have a sig-
nificant effect on the reduction in plasma levels of
1"-OHMDZ, LTA treatment showed a significant effect on
reduced 1’-OHMDZ plasma levels compared with saline pre-
treatment (Figure 2). There can be several possible explana-
tions for this intriguing observation. First, although LPS was
shown to down-regulate Cyp3all protein expression and
activity, regulation of other CYPs might be involved in
hepatic metabolism of midazolam. A recent study showed
that midazolam was metabolized even in the Cyp3a” mouse
model (van Waterschoot RA etal., 2008). The authors
reported that absence of Cyp3all was compensated by
up-regulation of other CYP enzymes, such as CYP2C.
Although LPS has been known to suppress CYP2C enzymes at
the transcriptional level (Morgan, 1997), the role of LPS on
CYP2C activity still remains unknown. In addition, a recent
study showed a slight, but significant tendency of increase in
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CYP2C activity in rats treated with LPS isolated from E. coli
Nissle 1917 (Matuskova et al., 2009). Midazolam is primarily
metabolized by Cyp3all; however, there is a significant con-
tribution from Cyp2cll, which was studied using anti-
Cyp2c11 antibody, in mouse liver microsomes (Perloff et al.,
2000; Warrington et al., 2000). Thus, the reduction in mida-
zolam metabolism by LPS or LTA in mice may also be due to
reduced expression and activity of both Cyp3all and Cyp2c
enzymes. It was recently shown that LPS treatment induced
serum f-glucuronidase activity in rats (Shimoi et al., 2001).
B-glucuronidases are responsible for hydrolyzing hydrophilic
conjugates such as luteolin glucuronide. B-glucuronidases
can thereby play an essential role in either detoxification of
reactive metabolites or in reducing the pharmacological
action of active metabolites. During inflammation,
B-glucuronidases, which are present in immune cells such as
neutrophils and eosinophils, are released in blood (Marshall
et al.,, 1988). This leads us to suggest that the glucuronide
conjugate of 1’-OHMDZ might be hydrolysed back to
1-OHMDZ by the serum B-glucuronidases. However, in con-
trast to Shimoi et al., (2001), we did not observe any change
in serum B-glucuronidase activity in LPS-treated mice up to
8 h compared with saline-treated mice (data not shown). This
can be possibly a species-dependent effect (rat vs. mouse) or
the route of administration of LPS (i.v. vs. i.p.), which needs
further evaluations.

Mostly, phase II metabolites are considered less active due
to their hydrophilic properties, which leads to increased
elimination. However, a clinical study reported that accumu-
lation of 1’-OHMDZ-gluc led to increased sedation in patients
with renal impairment (Bauer et al., 1995). Therefore, we
evaluated the PK profiles of 1-OHMDZ-gluc in LPS- or LTA-
treated mice. Interestingly, we observed a significant reduc-
tion in the Cy. and AUC of 1-OHMDZ-gluc in LPS- as well as
LTA-treated mice (Figure 2) compared with saline-treated
mice. Thus, further work will be required to elucidate the
pharmacological potency of 1-OHMDZ-gluc across species.
As LPS-induced inflammation down-regulated the gene
expression of several hepatic and renal UGT isoforms (Rich-
ardson et al., 2006), the decreased AUC of 1’-OHMDZ-gluc
could be attributed to down-regulation of hepatic UGTs.

In the PD studies, we observed ~2-fold increase in the
sleep time in LPS-treated mice compared with saline-treated
mice. Similar to the LPS study, compared with saline, the
sleep time in LTA-treated mice was increased by ~1.5-fold. LPS
treatment in mice was shown to be associated with decreased
plasma protein content (Hartmann et al., 2005). As mida-
zolam is >97% protein-bound drug and only the unbound
drug is pharmacologically active, the reduced protein binding
of midazolam in LPS-treated mice can contribute to increased
distribution and retention of midazolam in the brain. It is not
known whether the decrease in the protein content in LTA-
treated mice is responsible for the increased V4 of midazolam,
suggesting a higher unbound fraction of the drug.

The fact that many psychotropic drugs are converted into
active metabolites has major implications for PK/PD model-
ling. Usually, the metabolites of midazolam are considered
less active due to their hydrophilic nature and consequent
rapid elimination by the kidneys. However, several studies
have also shown that 1-OHMDZ is about 50% active as mida-
zolam in producing the sedative-hypnotic effects in healthy
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volunteers (Ziegler etal., 1983; Mandema etal., 1992).
Another clinical study also showed that prolonged sedation
in ICU patients suffering with renal failure was correlated
with significantly increased plasma levels of 1"-OHMDZ-gluc
(Bauer et al., 1995). Due to its short half-life and rapid con-
version to the glucuronide conjugate, we examined the rela-
tionship between the plasma concentrations of 1-OHMDZ
and its glucuronide conjugate with the sleep time induced by
midazolam administration in mice. The pharmacological
effect of midazolam or its metabolites is determined by their
ability to penetrate the blood-brain barrier, which in turn is
dependent on their plasma protein binding and lipophilicity.
As mentioned earlier, midazolam is >97% plasma protein
bound and has an intermediate-to-high hepatic extraction
ratio drug (ER=0.3 to 0.7). Therefore, its metabolism is
dependent on liver blood flow as well as protein binding.
Previous in vitro and in vivo studies have shown that LPS
treatment can decrease albumin synthesis by prevention of
albumin transcription (Ruot ef al., 2000; Wang et al., 2005).
Since only the plasma unbound fractions of midazolam and
its metabolites can penetrate the brain, any differences
between plasma protein binding of midazolam and its
metabolites can affect their relative in vivo potency. Mida-
zolam is more lipophilic than its metabolites. We can there-
fore postulate that concentration ratio of midazolam/total
metabolites in the brain, in the absence of any differences in
plasma protein binding, is even greater than that found in
plasma. This further supports the proposal that midazolam is
the major contributor to the overall sedative activity
observed. Also, our data show overall higher levels of plasma
midazolam concentration in LPS groups as compared to
saline. In the PK study with the lower dose (5 mg-kg™"), we
observed very high levels of midazolam plasma concentra-
tions in LTA-treated mice. Although we observed a significant
increase in the PD effect of midazolam with LTA treatment,
the AUC of midazolam in LTA group did not differ signifi-
cantly from saline-treated mice at the higher dose
(80 mg-kg™'). However, we observed a significant increase in
the V4 and ty/, of midazolam in the LTA group compared with
the saline group, which can possibly lead to prolonged seda-
tion in mice. The increase in V4 and t,; can be attributed to an
increased unbound fraction of drug.

A key adaptor of the TLR signalling pathway, namely
TIRAP, is known to regulate the inflammatory responses of
LPS or LTA on cell surfaces of immune cells (Fitzgerald et al.,
2001; Horng et al., 2001; 2002). We recently showed that the
gene expression of Cyp3all in mice was dependent on TIRAP
in LTA-induced inflammation (Ghose et al., 2011). However,
TIRAP was not involved in regulating gene expression of
Cyp3all in LPS-induced inflammation (Ghose et al., 2008).
In agreement with our previous studies, our results showed
that TIRAP played a significant role only in LTA-, and not in
LPS-mediated, down-regulation of Cyp3all protein expres-
sion as well as activity (Figures 4 and 5). This differential role
of TIRAP in regulating LPS- or LTA-induced inflammation
provides new approaches to counteract changes in drug
metabolism during infection and inflammation.

In conclusion, we observed significant effects of the two
inflammatory mediators (Gram-positive and Gram-negative
bacterial endotoxins) on metabolic profiles of midazolam.
Both LPS and LTA significantly altered the PK profiles of



Regulation of midazolam PK/PD during inflammation

midazolam and a differential role in regulating the PK profiles
of 1-OHMDZ. The plasma levels of 1'-OHMDZ-gluc were
significantly reduced in LPS- as well as LTA-treated mice. In
the PD study, both LPS and LTA played significant roles in
increasing the pharmacological activity of midazolam. This is
the first study demonstrating a detailed analysis of mida-
zolam and its metabolites (phase I and phase II) during Gram-
negative and Gram-positive acute phase response on the
PK/PD of midazolam. We also showed that TIRAP played a
significant role in the regulation of in vitro metabolism of
midazolam by LTA. As about 50% of cases of sepsis and septic
shock are caused by Gram-positive bacteria, examination of
Cyp3all regulation by LTA may prove to be a useful tool to
study the PK/PD of clinically relevant medications. These
studies show that activation of TLR signalling pathways affect
drug metabolism in mice. However, further studies are
needed to investigate the effect of these signalling pathways
on drug disposition in human diseases.
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